Описание видеоурока

Рассмотрим некоторые частные случаи квадратичной функции.

Первый случай. Выясним, что представляет собой график функции игрек равно одна третья икс квадрат плюс четыре.

Для этого в одной системе координат построим графики функций игрек равно одна третья икс квадрат.. и..игрек равно одна третья икс квадрат плюс четыре.

Составим таблицу значений функции игрек равно одна третья икс квадрат. Построим по заданным точкам график функции.

Чтобы получить таблицу значений функции игрек равно одна третья икс квадрат плюс четыре при тех же значениях аргумента, следует к найденным значениям функции игрек равно одна третья икс квадрат.. прибавить четыре.

Составим таблицу значений для графика функции игрек равно одна третья икс квадрат плюс четыре. Построим по указанным координатам точки и соединим их плавной линией. Получим график функции игрек равно одна третья икс квадрат плюс четыре.

Легко понять, что график функции игрек равно одна третья икс квадрат плюс четыре можно получить из графика функции игрек равно одна третья икс квадрат с помощью параллельного переноса на четыре единицы вверх вдоль оси игрек.

Таким образом, график функции игрек равно а икс квадрат плюс эн является параболой, которая получается из графика функции игрек равно а икс квадрат с помощью параллельного переноса вдоль оси игрек на модуль эн единиц вверх, если эн больше нуля или вниз, если эн меньше нуля.

Второй случай. Рассмотрим функцию игрек равно одна третья квадрата разности чисел икс и шесть и построим ее график.

Построим таблицу значений функции игрек равно одна третья икс квадрат, укажем полученные точки на координатной плоскости и соединим плавной линией.

Теперь составим таблицу значений для функции игрек равно одна третья квадрата разности чисел икс и шесть. По указанным точкам построим график функции.

Заметно, что каждая точка второго графика получается из соответствующей точки первого графика с помощью параллельного переноса на шесть единиц вдоль оси икс.

График функции игрек равно а умноженное на квадрат разности икс и эм.. является параболой, которую можно получить из графика функции игрек равно а икс квадрат с помощью параллельного переноса вдоль оси икс на модуль эм единиц влево, если эм больше нуля или на модуль эм единиц вправо, если эм меньше нуля.

Рассмотрим теперь график функции игрек равно одна третья умножить на квадрат разности икс и два плюс пять. Ее график можно получить из графика функции игрек равно одна третья икс квадрат с помощью двух параллельных переносов - сдвига параболы вправо на две единицы и вверх на пять единиц.

При этом производить параллельные переносы можно в любом порядке: сначала выполнить вдоль оси икс, а затем вдоль оси игрек или наоборот.

Но почему при добавлении к функции числа эн ее график перемещается на модуль эн единиц вверх, если эн больше нуля или вниз, если эн меньше нуля, а при добавлении числа эм к аргументу, функция перемещается на модуль эм единиц вправо, если эм меньше нуля или влево, если эм больше нуля?

Рассмотрим первый случай. Пусть требуется построить график функции игрек равно эф от икс.. плюс эн. Заметим, что ординаты этого графика для всех значений аргумента на эн единиц больше соответствующих ординат графика игрек равно эф от икс при положительном эн и на эн единиц меньше при отрицательном эн. Следовательно, график функции игрек равно эф от икс…плюс эн можно получить параллельным переносом вдоль оси ординат графика функции игрек равно эф от икс на модуль эн единиц вверх, если эн больше нуля и на модуль эн единиц вниз, если эн меньше нуля.

Рассмотрим второй случай. Пусть требуется построить график функции игрек равно эф от суммы икс и эм. Рассмотрим функцию игрек равно эф от икс, которая в некоторой точке икс равной икс первое принимает значение игрек первое равно эф от икс первое. Очевидно, что функция игрек равно эф от суммы икс и эм примет такое же значение в точке икс второе, координата которой определяется из равенства икс второе плюс эм равно икс первое, то есть икс певрое равно икс первое минус эм. Причем рассматриваемое равенство справедливо для всех значений икс из области определения функции. Следовательно, график функции может быть получен параллельным перемещением графика функции игрек равно эф от икс вдоль оси абсцисс влево на модуль эм единиц влево, если эм больше нуля и на модуль эм вправо, если эм меньше нуля. Параллельное перемещение графика функции вдоль оси икс на эм единиц эквивалентно переносу оси игрек на столько же единиц, но в противоположную сторону.

При вращении параболы вокруг ее оси получается фигура, которую называют параболоидом. Если внутреннюю поверхность параболоида сделать зеркальной и направить на нее пучок лучей, параллельных оси симметрии параболы, то отраженные лучи соберутся в точке, которую называют фокусом. В то же время если источник света поместить в фокусе, то отраженные от зеркальной поверхности параболоида лучи окажутся параллельными и не рассеиваются.

Первое свойство позволяет получить в фокусе параболоида высокую температуру. Согласно легенде это свойство использовал древнегреческий ученый Архимед. При защите Сиракуз в войне против римлян он построил систему параболических зеркал, которая позволила сфокусировать отраженные солнечные лучи на кораблях римлян. В результате температура в фокусах параболических зеркал оказалась настолько высокой, что на кораблях вспыхнул пожар, и они сгорели. Также это свойство используется при изготовлении параболических антенн.

Второе свойство используется при изготовлении прожекторов и автомобильных фар.

Урок по теме «Функция y=ax^2, ее график и свойства» изучается в курсе алгебры 9 класса в системе уроков по теме «Функции». Данный урок требует тщательной подготовки. А именно, таких методов и средств обучения, которые дадут поистине хорошие результаты.

Автор данного видеоурока позаботился о том, чтобы помочь учителям при подготовке к урокам по этой теме. Он разработал видеоурок с учетом всех требований. Материал подобран по возрасту школьников. Он не перегружен, но достаточно емок. Автор подробно рассказывает материал, останавливаясь на более важных моментах. Каждый теоретический пункт сопровождается примером, чтобы восприятие учебного материала было гораздо эффективнее и качественнее.

Урок может быть использован учителем на обычном уроке алгебры в 9 классе в качестве определенного этапа урока - объяснение нового материала. Учителю не придется в этот период ничего говорить или рассказывать. Ему достаточно включить этот видеоурок и следить за тем, чтобы обучающиеся внимательно слушали и записывали важные моменты.

Урок может использоваться и школьниками при самостоятельной подготовке к уроку, а также для самообразования.

Длительность урока составляет 8:17 минут. В начале урока автор замечает, что одной из важных функций является квадратичная функция. Затем вводится квадратичная функция с математической точки зрения. Дается ее определение с пояснениями.

Далее автор знакомит обучающихся с областью определения квадратичной функции. На экране появляется правильная математическая запись. После этого автор рассматривает пример квадратичной функции на реальной ситуации: за основу взята физическая задача, где показано, как зависит путь от времени при равноускоренном движении.

После этого автор рассматривает функцию y=3x^2. На экране появляется построение таблицы значений этой функции и функции y=x^2. Согласно данным этих таблиц строятся графики функций. Здесь же в рамке появляется пояснение, как получается график функции y=3x^2 из y=x^2.

Рассмотрев два частных случая, примера функции y=ax^2, автор приходит к правилу, как получается график этой функции из графика y=x^2.

Далее рассматривается функция y=ax^2, где a<0. И, подобно тому, как строились графики функций до этого, автор предлагает построить график функции y=-1/3 x^2. При этом он строит таблицу значений, строит графики функций y=-1/3 x^2 и, замечая при этом закономерность расположения графиков между собой.

Затем из свойств выводятся следствия. Их четыре. Среди них появляется новое понятие - вершины параболы. Далее следует замечание, где говорится, какие преобразования возможны для графика данной функции. После этого говорится о том, как получается график функции y=-f(x) из графика функции y=f(x), а также y=af(x) из y=f(x).

На этом урок, содержащий учебный материал заканчивается. Остается его закрепить, подобрав соответствующие задания в зависимости от способностей обучающихся.

Презентация и урок на тему:
"График функции $y=ax^2+bx+c$. Свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Дорофеева Г.В. Пособие к учебнику Никольского С.М.

Ребята, на последних уроках мы строили большое количество графиков, в том числе много парабол. Сегодня мы обобщим полученные знания и научимся строить графики этой функции в самом общем виде.
Давайте рассмотрим квадратный трехчлен $a*x^2+b*x+c$. $а, b, c$ называются коэффициентами. Они могут быть любыми числами, но $а≠0$. $a*x^2$ называется старшим членом, $а$ – старшим коэффициентом. Стоит заметить, что коэффициенты $b$ и $c$ могут быть равными нулю, то есть трехчлен будет состоять из двух членов, а третий равен нулю.

Давайте рассмотрим функцию $y=a*x^2+b*x+c$. Это функция называется "квадратичной", потому что старшая степень вторая, то есть квадрат. Коэффициенты такие же, как определено выше.

На прошлом уроке в последнем примере, мы разобрали построение графика схожей функции.
Давайте докажем, что любую такую квадратичную функцию можно свести к виду: $y=a(x+l)^2+m$.

График такой функции строится с использованием дополнительной системы координат. В большой математике, числа встречаются довольно редко. Практически любую задачу требуется доказать в самом общем случае. Сегодня мы разберем одно из таких доказательств. Ребята, вы сможете, увидеть всю силу математического аппарата, но так же и его сложность.

Выделим полный квадрат из квадратного трехчлена:
$a*x^2+b*x+c=(a*x^2+b*x)+c=a(x^2+\frac{b}{a}*x)+c=$ $=a(x^2+2\frac{b}{2a}*x+\frac{b^2}{4a})-\frac{b^2}{4a}+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$.
Мы получили, то что хотели.
Любую квадратичную функцию можно представить в виде:
$y=a(x+l)^2+m$, где $l=\frac{b}{2a}$, $m=\frac{4ac-b^2}{4a}$.

Для построения графика $y=a(x+l)^2+m$ нужно построить график функции $y=ax^2$. Причем вершина параболы будет находиться в точке с координатами $(-l;m)$.
Итак, наша функция $y=a*x^2+b*x+c$ - парабола.
Осью параболы будет являться прямая $x=-\frac{b}{2a}$, причем координаты вершины параболы по оси абсцисс, как мы можем заметить, вычисляется формулой: $x_{в}=-\frac{b}{2a}$.
Для вычисления координаты вершины параболы по оси ординат, вы можете:

  • воспользоваться формулой: $y_{в}=\frac{4ac-b^2}{4a}$,
  • напрямую подставить в исходную функцию координату вершины по $х$: $y_{в}=ax_{в}^2+b*x_{в}+c$.
Как вычислять ординату вершины? Опять же выбор за вами, но обычно вторым способом посчитать будет проще.
Если требуется описать какие-то свойства или ответить на какие-то определенные вопросы, не всегда нужно строить график функции. Основные вопросы, на которые можно ответить без построения, рассмотрим в следующем примере.

Пример 1.
Без построения графика функции $y=4x^2-6x-3$ ответьте на следующие вопросы:


Решение.
а) Осью параболы служит прямая $x=-\frac{b}{2a}=-\frac{-6}{2*4}=\frac{6}{8}=\frac{3}{4}$.
б) Абсциссу вершины мы нашли выше $x_{в}=\frac{3}{4}$.
Ординату вершины найдем непосредственной подстановкой в исходную функцию:
$y_{в}=4*(\frac{3}{4})^2-6*\frac{3}{4}-3=\frac{9}{4}-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}$.
в) График, требуемой функции, получится параллельным переносом графика $y=4x^2$. Его ветви смотрят вверх, а значит и ветви параболы исходной функции также будет смотреть вверх.
Вообще, если коэффициент $а>0$, то ветви смотрят вверх, если коэффициент $a
Пример 2.
Построить график функции: $y=2x^2+4x-6$.

Решение.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{4}{4}=-1$.
$y_{в}=2*(-1)^2+4(-1)-6=2-4-6=-8$.
Отметим координату вершины на оси координат. В этой точке, как будто в новой системе координат построим параболу $y=2x^2$.

Существует множество способов, упрощающих построение графиков параболы.

  • Мы можем найти две симметричные точки, вычислить значение функции в этих точках, отметить их на координатной плоскости и соединить их с вершиной кривой, описывающей параболу.
  • Мы можем построить ветвь параболы правее или левее вершины и потом ее отразить.
  • Мы можем строить по точкам.

Пример 3.
Найти наибольшее и наименьшее значение функции: $y=-x^2+6x+4$ на отрезке $[-1;6]$.

Решение.
Построим график данной функции, выделим требуемый промежуток и найдем самую нижнюю и самую высокую точки нашего графика.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{6}{-2}=3$.
$y_{в}=-1*(3)^2+6*3+4=-9+18+4=13$.
В точке с координатами $(3;13)$ построим параболу $y=-x^2$. Выделим требуемый промежуток. Самая нижняя точка имеет координату -3, самая высокая точка - координату 13.
$y_{наим}=-3$; $y_{наиб}=13$.

Задачи для самостоятельного решения

1. Без построения графика функции $y=-3x^2+12x-4$ ответьте на следующие вопросы:
а) Укажите прямую, служащую осью параболы.
б) Найдите координаты вершины.
в) Куда смотрит парабола (вверх или вниз)?
2. Построить график функции: $y=2x^2-6x+2$.
3. Построить график функции: $y=-x^2+8x-4$.
4. Найти наибольшее и наименьшее значение функции: $y=x^2+4x-3$ на отрезке $[-5;2]$.