Часть I

1. Степень окисления (с. о.) - это условный заряд атомов химического элемента в сложном веществе, вычисленный на основе предположения, что оно состоит из простых ионов.

Следует знать!

1) В соединениях с. о. водорода = +1, кроме гидридов .
2) В соединениях с. о. кислорода = -2, кроме пероксидов и фторидов
3) Степень окисления металлов всегда положительна.

Для металлов главных подгрупп первых трёх групп с. о. постоянна:
металлы IA группы - с. о. = +1,
металлы IIA группы - с. о. = +2,
металлы IIIA группы - с. о. = +3.
4) У свободных атомов и простых веществ с. о. = 0.
5) Суммарная с. о. всех элементов в соединении = 0.

2. Способ образования названий двухэлементных (бинарных) соединений.



4. Дополните таблицу «Названия и формулы бинарных соединений».


5. Определите степень окисления выделенного шрифтом элемента сложного соединения.


Часть II

1. Определите степени окисления химических элементов в соединениях по их формулам. Запишите названия этих веществ.

2. Разделите вещества FeO, Fe2O3, CaCl2, AlBr3, CuO, K2O, BaCl2, SO3 на две группы. Запишите названия веществ, указав степени окисления.


3. Установите соответствие между названием и степенью окисления атома химического элемента и формулой соединения.

4. Составьте формулы веществ по названию.

5. Сколько молекул содержится в 48 г оксида серы (IV)?


6. С помощью Интернета и других источников информации подготовьте сообщение о применении какого-либо бинарного соединения по следующему плану:
1) формула;
2) название;
3) свойства;
4) применение.

H2O вода, оксид водорода.
Вода при обычных условиях жидкость, без цвета, запаха, в толстом слое – голубая. Температура кипения около 100⁰С. Является хорошим растворителем. Состоит молекула воды из двух атомов водорода и одного атома кислорода, это его качественный и количественный состав. Это сложное вещество, для него характерны следующие химические свойства: взаимодействие со щелочными металлами, щелочноземельными металлами. Реакции обмена с водой называются гидролизом. Эти реакции имеют большое значение в химии.

7. Степень окисления марганца в соединении К2МnO4 равна:
3) +6

8. Наименьшую степень окисления хром имеет в соединении, формула которого:
1) Сг2O3

9. Максимальную степень окисления хлор проявляет в соединении, формула которого:
3) Сl2O7

Задача по определению степени окисления может оказаться как простой формальностью, так и сложной головоломкой. В первую очередь, это будет зависеть от формулы химического соединения, а также наличия элементарных знаний по химии и математике.

Зная основные правила и алгоритм последовательно-логичных действий, о которых пойдет речь в данной статье, при решении задач подобного типа, каждый с легкостью сможет справиться с этим заданием. А потренировавшись и научившись определять степени окисления разноплановых химических соединений, можно смело браться за уравнивание сложных окислительно-восстановительных реакций методом составления электронного баланса.

Понятие степени окисления

Чтобы научиться определять степень окисления, для начала необходимо разобраться, что это понятие означает?

  • Степень окисления применяют при записи в окислительно-восстановительных реакциях, когда происходит передача электронов от атома к атому.
  • Степень окисления фиксирует количество перенесенных электронов, обозначая условный заряд атома.
  • Степень окисления и валентность зачастую тождественны.

Данное обозначение пишется сверху химического элемента, в его правом углу, и представляет собой целое число со знаком «+» или «-». Нулевое значение степени окисления знака не несет.

Правила определения степени окисления

Рассмотрим основные каноны определения степени окисления:

  • Простые элементарные вещества, то есть те, которые состоят из одного вида атомов, всегда будут иметь нулевую степень окисления. Например, Na0, H02, P04
  • Существует ряд атомов, имеющих всегда одну, постоянную, степень окисления. Приведенные в таблице значения лучше запомнить.
  • Как видно, исключение бывает лишь у водорода в соединении с металлами, где он приобретает не свойственную ему степень окисления «-1».
  • Кислород также принимает степень окисления «+2» в химическом соединении с фтором и «-1» в составах перекисей, надперекисей или озонидов, где атомы кислорода соединены друг с другом.


  • Ионы металлов имеют несколько значений степени окисления (причем только положительные), поэтому ее определяют по соседним элементам в соединении. Например, в FeCl3, хлор имеет степень окисления «-1», у него 3 атома, значит умножаем -1 на 3, получаем «-3». Чтобы в сумме степеней окисления соединения получась «0», железо должно иметь степень окисления «+3». В формуле FeCl2, железо, соответственно, изменит свою степень на «+2».
  • Математически суммируя степени окисления всех атомов в формуле (с учетом знаков), всегда должно получаться нулевое значение. Например, в соляной кислоте H+1Cl-1 (+1 и -1 = 0), а в сернистой кислоте H2+1S+4O3-2(+1 * 2 = +2 у водорода,+4 у серы и -2 * 3 = – 6 у кислорода; в сумме +6 и -6 дают 0).
  • Степень окисления одноатомного иона будет равна его заряду. Например: Na+, Ca+2.
  • Наивысшая степень окисления, как правило, соотносится с номером группы в периодической системе Д.И.Менделеева.


Алгоритм действий определения степени окисления

Порядок нахождения степени окисления не сложен, но требует внимания и выполнения определенных действий.

Задача: расставить степени окисления в соединении KMnO4

  • Первый элемент – калий, имеет постоянную степень окисления «+1».
    Для проверки можно посмотреть в периодическую систему, где калий находится в 1 группе элементов.
  • Из оставшихся двух элементов, кислород, как правило, принимает степень окисления «-2».
  • Получаем следующую формулу: К+1MnхO4-2. Остается определить степень окисления марганца.
    Итак, х – неизвестная нам степень окисления марганца. Теперь важно обратить внимание на количество атомов в соединении.
    Количество атомов калия – 1, марганца – 1, кислорода – 4.
    С учетом электронейтральности молекулы, когда общий (суммарный) заряд равен нулю,

1*(+1) + 1*(х) + 4(-2) = 0,
+1+1х+(-8) = 0,
-7+1х = 0,
(при переносе меняем знак)
1х = +7, х = +7

Таким образом, степень окисления марганца в соединении равна «+7».

Задача: расставить степени окисления в соединении Fe2O3.

  • Кислород, как известно, имеет степень окисления «-2» и выступает окислителем. С учетом количества атомов (3), в сумме у кислорода получается значение «-6» (-2*3= -6), т.е. умножаем степень окисления на количество атомов.
  • Чтобы уравновесить формулу и привести к нулю, 2 атома железа будут иметь степень окисления «+3» (2*+3=+6).
  • В сумме получаем ноль (-6 и +6 = 0).

Задача: расставить степени окисления в соединении Al(NO3)3.

  • Атом алюминия – один и имеет постоянную степень окисления «+3».
  • Атомов кислорода в молекуле – 9 (3*3), степень окисления кислорода, как известно «-2», значит, умножая эти значения, получаем «-18».
  • Осталось уровнять отрицательные и положительные значения, определив таким образом степень окисления азота. -18 и +3, не хватает + 15. А учитывая, что имеется 3 атома азота, легко определить его степень окисления: 15 делим на 3 и получаем 5.
  • Степень окисления азота «+5», а формула будет иметь вид: Al+3(N+5O-23)3
  • Если сложно таким способом определять искомое значение, можно составлять и решать уравнения:

1*(+3) + 3х + 9*(-2) = 0.
+3+3х-18=0
3х=15
х=5


Итак, степень окисления – достаточно важное понятие в химии, символизирующее состояние атомов в молекуле.
Без знания определенных положений или основ, позволяющих правильно определять степень окисления, невозможно справиться с выполнением этой задачи. Следовательно, вывод один: досконально ознакомиться и изучить правила нахождения степени окисления, четко и лаконично представленные в статье, и смело двигаться дальше по нелегкой стезе химических премудростей.

Такой предмет школьной программы как химия вызывает многочисленные затруднения у большинства современных школьников, мало кто может определить степень окисления в соединениях. Наибольшие сложности у школьников, которые изучают то есть учеников основной школы (8-9 классы). Непонимание предмета приводит к возникновению неприязни у школьников к данному предмету.

Педагоги выделяют целый ряд причин такой «нелюбви» учеников средних и старших классов к химии: нежелание разбираться в сложных химических терминах, неумение пользоваться алгоритмами для рассмотрения конкретного процесса, проблемы с математическими знаниями. Министерством образования РФ были внесены серьезные изменение в содержание предмета. К тому же "урезали" и количество часов на преподавание химии. Это негативно сказалось на качестве знаний по предмету, снижению интереса к изучению дисциплины.

Какие темы курса химии даются школьникам труднее всего?

По новой программе в курс учебной дисциплины «Химия» основной школы включено несколько серьезных тем: периодическая таблица элементов Д. И. Менделеева, классы неорганических веществ, ионный обмен. Труднее всего дается восьмиклассникам определение степени окисления оксидов.

Правила расстановки

Прежде всего ученики должны знать, что оксиды являются сложными двухэлементными соединениями, в состав которых включен кислород. Обязательным условием принадлежности бинарного соединения к классу оксидов является расположение кислорода вторым в данном соединении.

Алгоритм для кислотных оксидов

Для начала заметим, что степени численные выражения валентности элементов. Кислотные оксиды образованы неметаллами либо металлами с валентностью от четырех до семи, вторым в таких оксидах обязательно стоит кислород.

В оксидах валентность кислорода всегда соответствует двум, определить ее можно по периодической таблице элементов Д. И. Менделеева. Такой типичный неметалл как кислород, находясь в 6 группе главной подгруппы таблицы Менделеева, принимает два электрона, чтобы полностью завершить свой внешний энергетический уровень. Неметаллы в соединениях с кислородом чаще всего проявляют высшую валентность, которая соответствует номеру самой группы. Важно напомнить, что степень окисления химических элементов это показатель, предполагающий положительное (отрицательное) число.

Неметалл, стоящий в начале формулы, обладает положительной степенью окисления. Неметалл кислород же в оксидах стабилен, его показатель -2. Для того чтобы проверить достоверность расстановки значений в кислотных окислах, придется перемножить все поставленные вами цифры на индексы у конкретного элемента. Расчеты считаются достоверными, если суммарный итог всех плюсов и минусов поставленных степеней получается 0.

Составление двухэлементных формул

Степень окисления атомов элементов дает шанс создавать и записывать соединения из двух элементов. При создании формулы, для начала оба символа прописывают рядом, обязательно вторым ставят кислород. Сверху над каждым из записанных знаков прописывают значения степеней окисления, затем между найденными числами находится то число, что будет без какого-либо остатка делиться на обе цифры. Данный показатель необходимо поделить по отдельности на числовое значение степени окисления, получая индексы для первого и второго компонентов двухэлементного вещества. Высшая степень окисления равна численно значению высшей валентности типичного неметалла, идентична номеру группы, где стоит неметалл в ПС.

Алгоритм постановки числовых значений в основных оксидах

Подобными соединениями считаются оксиды типичных металлов. Они во всех соединениях имеют показатель степени окисления не более +1 либо +2. Для того чтобы понять, какую будет иметь степень окисления металл, можно воспользоваться периодической системой. У металлов основных подгрупп первой группы, данный параметр всегда постоянный, он аналогичен номеру группы, то есть +1.

Металлы основной подгруппы второй группы также характеризуются стабильной степенью окисления, в цифровом выражении +2. Степени окисления оксидов в сумме с учетом их индексов (числа) должны давать нуль, поскольку химическая молекула считается нейтральной, лишенной заряда, частицей.

Расстановка степеней окисления в кислородсодержащих кислотах

Кислоты представляют собой сложные вещества, состоящими из одного или нескольких атомов водорода, которые связаны с каким-то кислотным остатком. Учитывая, что степени окисления это цифровые показатели, для их вычисления потребуются некоторые математические навыки. Такой показатель для водорода (протона) в кислотах всегда стабилен, составляет +1. Далее можно указать степень окисления для отрицательного иона кислорода, она также стабильная, -2.

Лишь только после этих действий, можно вычислять степень окисления у центрального компонента формулы. В качестве конкретного образца рассмотрим определение степени окисления элементов в серной кислоте H2SO4. Учитывая, что в молекуле данного сложного вещества содержится два протона водорода, 4 атома кислорода, получаем выражение такого вида +2+X-8=0. Для того чтобы в сумме образовывался ноль, у серы будет степень окисления +6

Расстановка степеней окисления в солях

Соли представляют собой сложные соединения, состоящие из ионов металла и одного либо нескольких кислотных остатков. Методика определения степеней окисления у каждого из составных частей в сложной соли такая же, как и в кислородсодержащих кислотах. Учитывая, что степень окисления элементов - это цифровой показатель, важно правильно обозначить степень окисления металла.

Если металл, образующий соль, располагается в главной подгруппе, его степень окисления будет стабильной, соответствует номеру группы, является положительной величиной. Если же в соли содержится металл подобной подгруппы ПС, проявляющий разные металла можно по кислотному остатку. После того как установлена будет степень окисления металла, ставят (-2), далее вычисляют степень окисления центрального элемента, воспользовавшись химическим уравнением.

В качестве примера рассмотрим определение степеней окисления у элементов в (средней соли). NaNO3. Соль образована металлом главной подгруппы 1 группы, следовательно, степень окисления натрия будет +1. У кислорода в нитратах степень окисления составляет -2. Для определения численного значения степени окисления составляет уравнение +1+X-6=0. Решая данное уравнение, получаем, что X должен быть +5, это и есть

Основные термины в ОВР

Для окислительного, а также восстановительного процесса существуют специальные термины, которые обязаны выучить школьники.

Степень окисления атома это его непосредственная способность присоединять к себе (отдавать иным) электроны от каких-то ионов или же атомов.

Окислителем считают нейтральные атомы или заряженные ионы, в ходе химической реакции присоединяющие себе электроны.

Восстановителем станут незаряженные атомы или заряженные ионы, что в процессе химического взаимодействия теряют собственные электроны.

Окисление представляется как процедура отдачи электронов.

Восстановление связано с принятием дополнительных электронов незаряженным атомом или ионом.

Окислительно-восстановительны процессом характеризуется реакция, в ходе которой обязательно меняется степень окисления атома. Это определение позволяет понять, как можно определить, является ли реакция ОВР.

Правила разбора ОВР

Пользуясь данным алгоритмом, можно расставить коэффициенты в любой химической реакции.


Знания и умения определять степень окисления элементов в молекулах позволяют решать очень сложные уравнения реакций и соответственно правильно рассчитывать количества отбираемых веществ для реакций, опытов и в технологических процессах. Степень окисления - одно из важнейших, ключевых понятий в химии. Данная таблица помогает в определении степени окисления элементов, также указаны исключения из правила, приведен алгоритм выполнения заданий такого типа

Скачать:


Предварительный просмотр:

ПРАВИЛА ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОКИСЛЕНИЯ.

Правило № 1

Правило

№ 2

Правило

№ 3

Правило

№ 4

Правило

№ 5

Правило

№ 6

Правило

№ 7

Правило

№ 8

Изолированные атомы химических элементов имеют степень окисления 0.

Простые вещества имеют степень окисления 0.

Водород имеет

Степень окисления,

Кислород имеет степень окисления, -2.

Фтор в соединениях имеет степень окисления, равную -1.

Щелочные металлы (гл. подгруппа I группа) имеют степень окисления, +1

Щелочно-земельные металлы (гл. подгруппа II группа, Са-Ra) и Mg имеют степень окисления +2.

Алюминий имеет в соединениях степень окисления +3.

Примеры.

Примеры.

Примеры.

Примеры.

Примеры.

Примеры.

Примеры.

Примеры.

H 2 O

Na 2 S

CaF 2

Al 2 O 3

H 3 N

Cr 2 O 3

CaF 2

K 2 O

Al(OH) 3

H 2 Se

SeO 2

SiF 4

LiOH

Ba(OH) 2

Al 2 S 3

Cl 2

H 3 AsO 4

Rb 2 O

ClF 3

NaOH

Сa(OH) 2

RbOH

NaH 2 PO 4

HPO 3

Be(OH) 2 =H 2 BeO 2

Al(OH) 3 =H 3 AlO 3

CН 4

Li 2 SO 3

Ca(HSO 4 ) 2

Исключения.

Исключе

ния.

Исключения.

Исключения.

Исключения.

Исключения.

Исключения.

Исключения.

Гидриды металлов:

OF 2- фторид кислорода

1 -1

MeH (KH)

Н 2 О 2 - пероксид водорода

2 -1

MeH 2 (BaH 2 )

1 -1

Me 2 O 2 (Na 2 O 2 ) - пероксиды щелочных металлов

3 -1

MeH 3 (AlH 3 )

1 -1

MeO 2 (CaO 2,

BaO 2 ) - пероксиды щелочноземельных металлов

Выводы : высшая положительная степень окисления большинства элементов численно равна номеру группы таблицы элементов, в которой он находится. Низшая отрицательная степень окисления элемента-неметалла определяется числом электронов, которых недостает для заполнения валентного слоя

Находим, какой из двух элементов в соединении является более электроотрицательным.

Определяем числовое значение степени окисления для более электроотрицательного элемента. (См. правила)

Определяем общее число отрицательных зарядов в соединении.

Находим степень окисления менее электроотрицательного элемента.

Над символом более электроотрицательного элемента ставим знак «минус» (-).

Для этого общее число положительных зарядов делим на индекс у данного элемента.

Над символом менее электроотрицательного элемента ставим знак «плюс» (+).

Для этого степень окисления более электроотрицательного элемента умножаем на его индекс.

Помним, что алгебраическая сумма степеней окисления химических элементов в соединении должна быть равна =0.

Закрепление: определите степени окисления элементов в заданных формулах бинарных соединений . SiF 4 , P 2 O 5 , As 2 O 5 , CaH 2 , Li 3 N, OsF 8 , SiCl 4 , H 3 P, SCl 4 , PCL 3 , H 4 C, H 3 As, SF 6 , AlN, CuO, Fe


Видеоурок 2: Степень окисления химических элементов

Видеоурок 3: Валентность. Определение валентности

Лекция: Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность


Электроотрицательность – это способность атомов притягивать к себе электроны других атомов для соединения с ними.

Судить об электроотрицательности того или иного химического элемента легко по таблице. Вспомните, на одном из наших уроков было сказано о том, что она возрастает при движении слева направо по периодам в таблице Менделеева и с перемещением снизу вверх по группам.

К примеру, дано задание определить какой элемент из предложенного ряда наиболее электроотрицателен: C (углерод), N (азот), O (кислород), S (сера)? Смотрим по таблице и находим, что это О, потому что он правее и выше остальных.


Какие же факторы оказывают влияние на электроотрицательность? Это:

  • Радиус атома, чем он меньше, тем электроотрицательность выше.
  • Заполненность валентной оболочки электронами, чем их больше, тем выше электроотрицательность.

Из всех химических элементов фтор является наиболее электроотрицательным, потому как у него малый атомный радиус и на валентной оболочке 7 электронов.


К элементам, имеющим низкую электроотрицательность, относятся щелочные и щелочноземельные металлы. У них большие радиусы и очень мало электронов на внешней оболочке.

Значения электроотрицательности атома не могут быть постоянными, т.к. она зависит от многих факторов в числе которых перечисленные выше, а также степень окисления, которая может быть различной у одного и того же элемента. Поэтому принято говорить об относительности значений электроотрицательности. Вы можете пользоваться следующими шкалами:




Значения электроотрицательности вам понадобятся при записи формул бинарных соединений, состоящих из двух элементов. К примеру, формула оксида меди Cu 2 O - первым элементом следует записывать тот, чья электроотрицательность ниже.


В момент образования химической связи если разница электроотрицательности между элементами больше 2,0 образуется ковалентная полярная связь, если меньше, ионная.

Степень окисления

Степень окисления (СО) – это условный или реальный заряд атома в соединении: условный – если связь ковалентная полярная, реальный – если связь ионная.

Атом приобретает положительный заряд при отдаче электронов, а отрицательный заряд – при принятии электронов.

Степени окисления записываются над символами со знаком «+»/«-» . Есть и промежуточные СО. Максимальная СО элемента положительная и равна № группы, а минимальная отрицательная для металлов равна нулю, для неметаллов = (№ группы – 8) . Элементы с максимальной СО только принимают электроны, а с минимальной, только отдают. Элементы же, имеющие промежуточные СО могут и отдавать и принимать электроны.


Рассмотрим некоторые правила, которыми стоит руководствоваться для определения СО:

    СО всех простых веществ равна нулю.

    Равна нулю и сумма всех СО атомов в молекуле, так как любая молекула электронейтральна.

    В соединениях с ковалентной неполярной связью СО равна нулю (О 2 0), а с ионной связью равна зарядам ионов (Na + Cl - СО натрия +1, хлора -1). СО элементов соединений с ковалентной полярной связью рассматриваются как с ионной связью (H:Cl = H + Cl - , значит H +1 Cl -1).

    Элементы в соединении, имеющие наибольшую электроотрицательность, имеют отрицательные степени окисления, если наименьшую положительные. Исходя из этого можно сделать вывод, что металлы имеют только «+» степень окисления.

Постоянные степени окисления :

    Щелочные металлы +1.

    Все металлы второй группы +2. Исключение: Hg +1, +2.

    Алюминий +3.

  • Водород +1. Исключение: гидриды активных металлов NaH, CaH 2 и др., где степень окисления водорода равна –1.

    Кислород –2. Исключение: F 2 -1 O +2 и пероксиды, которые содержат группу –О–О–, в которой степень окисления кислорода равна –1.

Когда образуется ионная связь, происходит определенный переход электрона, от менее электроотрицательного атома к атому большей электроотрицательности. Так же, в данном процессе, атомы всегда теряют электронейтральность и впоследствии превращаются в ионы. Так же образуются целочисленные заряды. При образовании ковалентной полярной связи, электрон переходит только частично, поэтому возникают частичные заряды.

Валентность

Валентность – это способность атомов образовать n - число химических связей с атомами других элементов.

А еще валентность – это способность атома удержать другие атомы возле себя. Как вам известно из школьного курса химии, разные атомы связываются друг с другом электронами внешнего энергетического уровня. Неспаренный электрон ищет для себя пару у другого атома. Эти электроны внешнего уровня называются валентными. Значит валентность можно определить и как число электронных пар, связывающих атомы друг с другом. Посмотрите структурную формулу воды: Н – О – Н. Каждая черточка – это электронная пара, значит показывает валентность, т.е. кислород здесь имеет две черточки, значит он двухвалентен, от молекул водорода исходят по одной черточке, значит водород одновалентен. При записи валентность обозначается римскими цифрами: О (II), Н (I). Может указываться и над элементом.


Валентность бывает постоянной либо переменной. К примеру, у щелочей металлов она постоянна и равняется I. А вот хлор в различных соединениях проявляет валентности I, III, V, VII.


Как определить валентность элемента?

    Вновь обратимся к Периодической таблице. Постоянная валентность у металлов главных подгрупп, так металлы первой группы имеют валентность I, второй II. А у металлов побочных подгрупп валентность переменная. Также она переменная и у неметаллов. Высшая валентность атома равна № группы, низшая равна = № группы - 8. Знакомая формулировка. Не означает ли это то, что валентность совпадает со степенью окисления. Помните, валентность может совпадать со степенью окисления, но данные показатели не тождественны друг другу. Валентность не может иметь знака =/-, а также не может быть нулевой.

    Второй способ определения валентности по химической формуле, если известна постоянная валентность одного из элементов. Например, возьмем формулу оксида меди: CuО. Валентность кислорода II. Видим, что на один атом кислорода в данной формуле приходится один атом меди, значит и валентность меди равна II. А теперь возьмем формулу посложнее: Fe 2 O 3 . Валентность атома кислорода равна II. Таких атомов здесь три, умножаем 2*3 =6. Получили, что на два атома железа приходится 6 валентностей. Узнаем валентность одного атома железа: 6:2=3. Значит валентность железа равна III.

    Кроме того, когда необходимо оценить "максимальную валентность", всегда следует исходить из электронной конфигурации, которая имеется в «возбужденном» состоянии.