На всякий заряд, находящийся в электрическом поле, действует сила, которая может перемещать этот заряд. Определим работу А перемещения точечного положительного заряда из точки О в точку совершаемую силами электрического поля отрицательного заряда (рис. 158). По закону Кулона, сила, перемещающая заряд, является переменной и равной

где переменное расстояние между зарядами. Заметим, что по такому же закону (обратной пропорциональности квадрату расстояния) изменяется сила, перемещающая массу в гравитационном поле массы (см. § 17).

Поэтому работа перемещения заряда в электрическом поле (совершаемая электрическими силами) выразится формулой, аналогичной формуле работы перемещения массы в гравитационном поле (совершаемой гравитационными силами):

Формула (19) выводится точно таким же путем, каким была выведена формула (8) в § 17.

Еще проще можно вывести формулу (19) посредством интегрирования:

Знак минус перед интегралом поставлен в связи с тем, что для сближающихся зарядов величина отрицательна, тогда как работа должна быть положительной, поскольку перемещение заряда происходит в направлении действия силы.

Сопоставляя формулу (19) с общей формулой (4) из § 17, придем к выводу, что величина представляет собой потенциальную энергию заряда в данной точке электрического поля:

Знак минус показывает, что по мере перемещения заряда силами поля его потенциальная энергия убывает, переходя в работу перемещения. Величина

равная потенциальной энергии единичного положительного заряда называется потенциалом электрического поляу или электрическим потенциалом. Электрический потенциал не зависит от величины перемещаемого заряда и потому может служить характеристикой электрического поля, подобно тому, как гравитационный потенциал служит характеристикой гравитационного поля.

Подставив выражение потенциала (21) в формулу работы (19), получим

Полагая получим

Таким образом, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного положительного заряда из одной точки в другую.

Переместим теперь заряд (действуя против сил поля) из некоторой точки на бесконечность Тогда, согласно формулам (21) и (23), и

При получим Следовательно, потенциал точки электрического поля равен работе перемещения единичного положительного заряда из данной точки на бесконечность.

Из формулы (24) установим единицу измерения потенциала, называемую вольтом (В):

т. е. вольт является потенциалом такой точки поля, при перемещении из которой заряда «а бесконечность совершается работа в Размерность потенциала

Теперь, учитывая формулу (25), можно показать, что установленная в § 75 единица измерения напряженности электрического поля действительно равна

Если заряд создающий поле, отрицателен, то силы поля препятствуют перемещению единичного положительного заряда на бесконечность, совершая тем самым отрицательную работу. Поэтому потенциал любой точки поля, созданного отрицательным зарядом, является отрицательным (подобно тому, как отрицателен гравитационный потенциал любой точки поля тяготения). Если же заряд, создающий поле, положителен, то силы поля сами перемещают единичный положительный заряд на бесконечность, совершая положительную работу. Поэтому потенциал любой точки поля положительного заряда является положительным. Исходя из этих соображений можно записать выражение (21) в более общем виде:

где знак минус относится к случаю отрицательного заряда, а знак плюс - к случаю положительного заряда

Если поле создается несколькими зарядами, то его потенциал равен алгебраической сумме потенциалов полей всех этих зарядов (потенциал - скалярная величина: отношение работы к заряду). Поэтому потенциал поля любой заряженной системы можно рассчитать на основе приведенных ранее формул, предварительно разбив систему на большое число точечных зарядов.

Работа перемещения заряда в электрическом поле, как и работа перемещения массы в гравитационном поле, не зависит от формы пути, а зависит только от разности потенциалов начальной и конечной точек пути. Следовательно, электрические силы являются потенциальными силами (см. § 17). Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной. Из формулы (22) следует, что работа перемещения заряда вдоль эквипотенциальной поверхности равна нулю (так как Это означает, что силы электрического поля направлены перпендикулярно эквипотенциальным поверхностям, т. е. силовые линии поля перпендикулярны эквипотенциальным поверхностям (рис. 159).

Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда из одной точки электростатического поля в другую на отрезке пути , по определению равна

где - угол между вектором силы F и направлением движения . Если работа совершается внешними силами, то dA0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении пробного заряда из точки “а” в точку “b” будет равна

где - кулоновская сила, действующая на пробный заряд в каждой точке поля с напряженностью Е. Тогда работа

Пусть заряд перемещается в поле заряда q из точки “а”, удалённой от q на расстоянии в точку “b”, удаленную от q на расстоянии (рис 1.12).

Как видно из рисунка тогда получим

Как было сказано выше, работа сил электростатического поля, совершаемая против внешних сил, равна по величине и противоположна по знаку работе внешних сил, следовательно

Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда: ,

где W п1 и W п2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q , изменение потенциальной энергии равно

.

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r 1 и r 2 от заряда Q ,

Если поле создано системой точечных зарядов Q 1 , Q 2 ,¼, Q n , то изменение потенциальной энергии заряда q в этом поле:

.

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q , а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q , находящегося в электрическом поле, созданном другим точечным зарядом Q , получим

,

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную .В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q :

.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Q i (i = 1, 2, ... ,n ). Энергиявзаимодействия всех n зарядов определится соотношением

,

где r ij - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля , определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = W п / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e:

Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q 1, Q 2 ¼, Q n имеем

,

где r i - расстояние от точки поля, обладающей потенциалом j, до заряда Q i . Если заряд произвольным образом распределен в пространстве, то

,

где r - расстояние от элементарного объема dx , dy , dz до точки (x , y , z ), где определяется потенциал; V - объем пространства, в котором распределен заряд.

Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q (j 1 - j 2).
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов - источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как A ¥ = q j 1 .
Таким образом, потенциал â данной точке электростатического поля - этофизическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную : j = A ¥ / q .
В некоторых случаях потенциал электрического поля нагляднее определяется какфизическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку . Последнее определение удобно записать следующим образом:

В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1,60×10 -19 Кл×1 В = 1,60×10 -19 Дж.

Метод точечных зарядов.

Примеры применения метода для расчета напряженности и потенциала электростатического поля.

Будем искать, каким образом связаны напряженность электростатического поля, которая является его силовой характеристикой , и потенциал, который есть его энергетическая характеристика поля .

Работа по перемещению единичного точечного положительного электрического заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены достаточно близко друг к другу и x 2 -x 1 =dx, равна E x dx. Та же работа равна φ 1 -φ 2 =dφ. Приравняв обе формулы, запишем
(1)

где символ частной производной подчеркивает, что дифференцирование осуществляется только по х. Повторив эти рассуждения для осей у и z, найдем вектор Е :

где i , j , k - единичные векторы координатных осей х, у, z.
Из определения градиента следует, что
или (2)

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус говорит о том, что вектор напряженности Е поля направлен в сторону уменьшения потенциала .
Для графического представления распределения потенциала электростатического поля, как и в случае поля тяготения, пользуютсяэквипотенциальными поверхностями - поверхностями, во всех точках которых потенциал φ имеет одинаковое значение.
Если поле создается точечным зарядом, то его потенциал, согласно формуле потенциала поля точечного заряда, φ=(1/4πε 0)Q/r .Таким образом, эквипотенциальные поверхности в данном случае - концентрические сферы с цетром в точечном заряде. Заметим также, линии напряженности в случае точечного заряда - радиальные прямые. Значит, линии напряженности в случае точечного зарядаперпендикулярны эквипотенциальным поверхностям.
Линии напряженности всегда перпендикулярны к эквипотенциальным поверхностям. В самом деле, все точки эквипотенциальной поверхности обладают одинаковым потенциалом, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, которые действуют на заряд, всегда направлены по перпендикурярам к эквипотенциальным поверхностям. Значит, вектор Е всегда перпендикулярен к эквипотенциальным поверхностям , а поэтому линии вектора Е перпендикулярны этим поверхностям.
Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесконечное множество. Но обычно их проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были равны друг другу. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где гуще расположены эти поверхности, напряженность поля больше.
Значит, зная расположение линий напряженности электростатического поля, можно нарисовать эквипотенциальные поверхности и, наоборот, по известному нам расположению эквипотенциальных поверхностей можно найти в каждой точке поля направление и модуль напряженности поля. На рис. 1 в качестве примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного электрического заряда (а) и заряженного металлического цилиндра, который имеет на одном конце выступ, а на другом - впадину (б).

Теорема Гаусса.

Поток вектора напряженности. Теорема Гаусса. Применение теоремы Гаусса для расчета электростатических полей.

Поток вектора напряженности.
Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности N E .

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где - угол между силовой линией и нормалью к площадке dS; - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

Разобъем весь объем, заключенный внутри поверхности S на элементарные кубики типа изображенных на рис. 2.7. Грани всех кубиков можно разделить на внешние, совпадающие с поверхностью S и внутренние, граничащие только со смежными кубиками. Сделаем кубики настолько маленькими, чтобы внешние грани точно воспроизводили форму поверхности. Поток вектора a через поверхность каждого элементарного кубика равен

,

а суммарный поток через все кубики, заполняющие объем V, есть

(2.16)

Рассмотрим входящую в последнее выражение сумму потоков d Ф через каждый из элементарных кубиков. Очевидно, что в эту сумму поток вектора a через каждую из внутренних граней войдет дважды.

Тогда полный поток через поверхность S=S 1 +S 2 будет равен сумме потоков через только внешние грани, поскольку сумма потоков через внутреннюю грань даст ноль. По аналогии можно заключить, что все относящиеся к внутренним граням члены суммы в левой части выражения (2.16), сократятся. Тогда, переходя в силу элементарности размеров кубиков от суммирования к интегрированию, получим выражение (2.15), где интегрирование производится по поверхности, ограничивающей объем.

Заменим в соответствии с теоремой Остроградского-Гаусса поверхностный интеграл в (2.12) объемным

и представим суммарный заряд как интеграл от объемной плотности по объему

Тогда получим следующее выражение

Полученное соотношение должно выполняться для любого произвольно выбранного объема V . Это возможно только в том случае, если значения подинтегральных функций в каждой точке объема одинаковы. Тогда можно записать

(2.17)

Последнее выражение представляет собой теорему Гаусса в дифференциальной форме.

1. Поле равномерно заряженной бесконечной плоскости . Бесконечная плоскость заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS - заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Е n совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε 0 , откуда

Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно .

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 2). Пусть плоскости заряжены равномерно разными по знаку зарядами с поверхностными плотностями +σ и –σ. Поле таких плоскостей будем искать как суперпозицию полей, которые создаваются каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние - от отрицательно заряженной плоскости. Слева и справа от плоскостей поля вычитаются (поскольку линии напряженности направлены навстречу друг другу), значит здесь напряженность поля E=0. В области между плоскостями E = E + + E - (E + и E - находятся по формуле (1)), поэтому результирующая напряженность

Значит, результирующая напряженность поля в области между плоскостями описывается зависимостью (2), а вне объема, который ограничен плоскостями, равна нулю.

3. Поле равномерно заряженной сферической поверхности . Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε 0 , откуда

(3)

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r" 4. Поле объемно заряженного шара . Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r"

Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r" согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.
5. Поле равномерно заряженного бесконечного цилиндра (нити) . Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен слинейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrl Е. Используя теорему Гаусса, при r>R 2πrl Е = τl /ε 0 , откуда

Если r

Электрический диполь.

Характеристики электрического диполя. Поле диполя. Диполь в электрическом поле.

Совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии друг от друга, малом по сравнению с расстоянием до рассматриваемой точки поля называется электрическим диполем.(рис.13.1)

Произведение называется моментом диполя. Прямая линия, соединяющая заряды называется осью диполя. Обычно момент диполя считается направленным по оси диполя в сторону положительного заряда.

7.7. Работа и энергия электростатического поля

7.7.1. Работа сил электростатического поля по перемещению заряда

Работу сил электростатического поля можно рассчитать двумя способами в зависимости от того, является поле однородным или неоднородным.

В однородном электростатическом поле работа сил поля по перемещению заряда q определяется формулой

A = (F → , Δ r →) = F → ⋅ Δ r → = F Δ r cos α ,

где F → - сила, действующая на заряд q со стороны поля, F → = q E → ; q - заряд; E → - напряженность поля; Δ r → - перемещение заряда; α - угол между векторами F → и Δ r → ;

В однородном поле сила, действующая на заряд, является постоянной величиной, так как вектор E → имеет одинаковое значение и направление в любой точке поля).

При перемещении электрического заряда:

  • вдоль силовой линии электростатическим полем совершается максимальная положительная работа -

A = q E Δ r cos 0 ° = q E Δ r ;

  • противоположно силовой линии электростатическим полем совершается максимальная отрицательная работа -

A = q E Δ r cos 180 ° = − q E Δ r ;

  • перпендикулярно силовой линии электростатическим полем работа не совершается -

A = q E Δ r cos 90 ° = 0 .

В любом ( в том числе в неоднородном ) электростатическом поле работа сил поля не зависит от траектории перемещения заряда и может быть рассчитана по формуле

A = q (φ 1 − φ 2),

где φ 1 - потенциал точки поля, в которой заряд q находился в начальный момент времени; φ 2 - потенциал точки поля, в которой заряд q оказался в результате перемещения.

При перемещении электрического заряда по эквипотенциальной поверхности (φ 1 = φ 2) электростатическим полем работа не совершается:

A = q (φ 1 − φ 2) = 0.

В любом электростатическом поле (однородном и неоднородном) работа по перемещению электрического заряда может быть рассчитана графически как площадь трапеции (рис. 7.23) по графику зависимости проекции силы на направление перемещения F r (r ).

Рис. 7.23

Пример 21. Какую работу совершит однородное электростатическое поле напряженностью 300 В/м при перемещении заряда 5,00 мкКл на 50,0 мм в направлении, составляющем угол 120° с направлением силовых линий?

Решение . На рисунке показаны линии вектора напряженности однородного электростатического поля E → и перемещаемый в данном поле заряд q . Перемещение заряда происходит из точки 1 в точку 2 .

Работа сил однородного электростатического поля по перемещению точечного заряда определяется формулой

A = q E | Δ r → | cos α ,

где q - заряд, совершающий перемещение в указанном поле; E - модуль вектора напряженности поля; | Δ r → | - величина перемещения; α - угол между направлениями векторов напряженности и перемещения.

Угол между векторами E → и Δ r → составляет 120°, поэтому

A = q E | Δ r → | cos 120 ° = − 0,5 q E | Δ r → | .

Расчет дает значение

A = −0,5 ⋅ 5,00 ⋅ 10 −6 ⋅ 300 ⋅ 50,0 ⋅ 10 −3 =

= −37,5 ⋅ 10 −6 Дж = −37,5 мкДж.

При перемещении заряда в указанном направлении совершается отрицательная работа –37,5 мкДж, так как угол между направлением силовых линий и направлением перемещения является тупым.

Пример 22. Точечный заряд 3 мкКл расположен в начале прямоугольной системы координат xOy , где x и y заданы в метрах. Какую работу совершает электростатическое поле, образованное данным зарядом, при перемещении другого точечного заряда 2 мкКл из точки (5; 0) в точку (0; 5)? Система зарядов находится в вакууме.

Решение . На рисунке показаны линии вектора напряженности электростатического поля E → , образованного точечным положительным зарядом Q , расположенным в начале системы координат. Перемещение Δ r → другого точечного заряда q происходит из точки с координатами (5; 0) в точку с координатами (0; 5).

Электростатическое поле, образованное точечным зарядом, является неоднородным. Поэтому для вычисления работы сил поля используем формулу

A = q (φ 1 − φ 2),

где q - заряд, перемещаемый в поле; φ 1 - потенциал электростатического поля, образованного зарядом Q в точке (5; 0); φ 2 - потенциал электростатического поля, образованного зарядом Q в точке (0; 5).

Потенциал электростатического поля, образованного зарядом Q , задается следующими выражениями:

  • для точки (5; 0) -

φ 1 = k Q r 1 ,

где k - коэффициент пропорциональности, k = 9 ⋅ 10 9 Н ⋅ м 2 /Кл 2 ; r 1 - расстояние от заряда Q до точки с координатами (5, 0), r 1 = 5 м;

  • для точки (0; 5) -

φ 2 = k Q r 2 ,

где r 2 - расстояние от заряда Q до точки с координатами (0, 5), r 2 = 5 м.

С учетом выражений для потенциалов формула для вычисления работы приобретает следующий вид:

A = q (k Q r 1 − k Q r 2) = k q Q (1 r 1 − 1 r 2) .

Подстановка числовых данных дает результат:

A = 9 ⋅ 10 9 ⋅ 3 ⋅ 10 − 6 ⋅ 2 ⋅ 10 − 6 ⋅ (1 5 − 1 5) = 0 .

При перемещении заряда между точками с указанными координатами электростатическое поле не совершает работу, так как точки находятся на одинаковом расстоянии от заряда, создающего данное поле.

Одним из основных понятий в электричестве является электростатическое поле. Его важным свойством считается работа по перемещению заряда в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени.

Условия выполнения работы

Сила, находящиеся в электростатическом поле, перемещает заряд из одного места в другое. На нее совершенно не влияет форма траектории. Определение силы зависит только от положения точек в начале и конце, а также, от общей величины заряда.

Исходя из этого, можно сделать следующий вывод: Если траектория при перемещении электрозаряда является замкнутой, то вся работа сил в электростатическом поле имеет нулевое значение. При этом, форма траектории не имеет значения, поскольку кулоновские силы производят одинаковую работу. Когда направление, в котором перемещается электрозаряд, изменяется на противоположное, то сама сила также изменяет свой знак. Поэтому, замкнутая траектория, независимо от своей формы, определяет всю работу, производимую кулоновскими силами, равной нулю.

Если в создании электростатического поля принимает участие сразу несколько точечных зарядов, то их общая работа будет складываться из суммы работ, производимых кулоновскими полями этих зарядов. Общая работа, независимо от формы траектории, определяется исключительно местом расположения начальных и конечных точек.

Понятие потенциальной энергии заряда

Свойственная электростатическому полю, позволяет определять потенциальную энергию какого-либо заряда. Кроме того, с ее помощью более точно устанавливается работа по перемещению заряда в электрическом поле. Чтобы получить это значение, в пространстве необходимо выбрать определенную точку и потенциальную энергию заряда, размещаемого в данной точке.

Заряд, помещаемый в любую точку, имеет потенциальную энергию, равной работе, совершаемой электростатическим полем, во время перемещения заряда из одной точки в другую.

В физическом смысле, потенциальная энергия представляет собой значение для каждой из двух разных точек пространства. При этом, работа по перемещению заряда находится вне зависимости от путей его перемещения и выбранной точки. Потенциал электростатического поля в данной пространственной точке, равняется работе, совершаемой электрическими силами, когда единичный положительный заряд удаляется из этой точки в бесконечное пространство.

Работа электрического поля

§ 12.3 Работа сил электростатического поля. Потенциал. Эквипотенциальные поверхности

На заряд q пр помещённый в произвольную точку электростатического поля с напряжённостью Е, действует сила F= q пр E. Если заряд не закреплён, то сила заставит его перемещаться и, значит, будет совершаться работа. Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда q пр из точки а электрического поля в точку b на отрезке пути dℓ, по определению, равна

(α - угол между F и направлением движения) (рис.12.13).

Если работа совершается внешними силами, то dA< 0 , если силами поля, то dA > 0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении q пр из точки a в точку b

(12.20)

Рисунок -12.13

(
- кулоновская сила, действующая на пробный зарядq пр в каждой точке поля с напряжённостью E).

Тогда работа

(12.21)

Перемещение совершается перпендикулярно вектору , следовательноcosα =1, работа переноса пробного заряда q пр от a к b равна

(12.22)

Работа сил электрического поля при перемещении заряда не зависит от формы пути, а зависит лишь от взаимного расположения начальной и конечной точек траектории.

Следовательно, электростатического поля точечного заряда является потенциальным , а электростатические силы – консервативными .

Это свойство потенциальных полей. Из него следует, что работа совершаемая в электрическом поле по замкнутому контуру, равна нулю:

(12.23)

Интеграл
называется циркуляцией вектора напряженности . Из обращения в нуль циркуляции вектора Е следует, что линии напряжённости электростатического поля не могут быть замкнутыми, они начинаются на положительных и кончаются на отрицательных зарядах.

Как известно, работа консервативных сил совершается за счёт убыли потенциальной энергии. Поэтому, работу сил электростатического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд q пр в начальной и конечной точках поля заряда q:

(12.24)

откуда следует, что потенциальная энергия заряда q пр в поле заряда q равна

(12.25)

Для одноименных зарядов q пр q >0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноимённых зарядов q пр q < 0 и потенциальная энергия их взаимодействия (притяжения) отрицательна.

Если поле создаётся системой n точечных зарядов q 1, q 2, …. q n , то потенциальная энергия U заряда q пр, находящегося в этом поле, равна сумме его потенциальных энергий U i , создаваемых каждым из зарядов в отдельности:

(12.26)

Отношение не зависят от зарядаq и является энергетической характеристикой электростатического поля.

Скалярная физическая величина, измеряемая отношением потенциальной энергии пробного заряда в электростатическом поле к величине этого заряда, называется потенциалом электростатического поля.

(12.27)

Потенциал поля, создаваемый точечным зарядом q, равен

(12.28)

Единица потенциала – вольт .

Работа, совершаемая силами электростатического поля при перемещении заряда q пр из точки 1 в точку 2 может быть представлена как

т.е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках.

Разность потенциалов двух точек электростатического поля φ 1 -φ 2 равна напряжению. Тогда

Отношение работы, совершаемой электростатическим полем при перемещении пробного заряда из одной точки поля в другую, к величине этого заряда называется напряжением между этими точками.

(12.30)

Графически электрическое поле можно изображать не только с помощью линий напряжённости, но и с помощью эквипотенциальных поверхностей.

Эквипотенциальные поверхности – совокупность точек, имеющих одинаковый потенциал. Из рисунка видно, что линии напряжённости (радиальные лучи) перпендикулярны эквипотенциальным линиям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленноемножество (рис.12.14). Однако их проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряжённость поля в разных точках. Там, где эти поверхности расположены гуще, напряжённость поля больше. Зная расположение эквипотенциальных линий (поверхностей), можно построить линии напряжённости или по известному расположению линий напряжённости можно построить эквипотенциальные поверхности.

§ 12.4 Связь напряжённости и потенциала

Электростатическое поле имеет две характеристики: силовую (напряжённость) и энергетическую (потенциал). Напряжённость и потенциал – различные характеристики одной и той же точки поля, следовательно, между ними должна быть связь.

Работа по перемещению единичного точечного положительного заряда из одной точки в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и х 1 – х 2 = dx , равна qЕ х dx. Та же работа равна q(φ 1 - φ 2)= -dφq. Приравнивая оба выражения, можем записать

Повторив аналогичные рассуждения для осей у и z, можем найти вектор :

где
- единичные векторы координатных осей х, у,z.

Из определения градиента следует, что

или
(12.31)

т.е. напряжённость поля Е равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряжённости Е поля направлен в сторону убывания потенциала.

Установленная связь между напряжённостью и потенциалом позволяет по известной напряжённости поля найти разность потенциалов между двумя произвольными точками этого поля.

      Поле равномерно заряженной сферы радиусом R

Напряжённость поля вне сферы определяется по формуле

(r >R)

Разность потенциалов между точками r 1 и r 2 (r 1 >R; r 2 >R) определим, используя соотношение

Потенциал сферы получим, если r 1 = R, r 2 → ∞:

      Поле равномерно заряженного бесконечно длинного цилиндра

Напряжённость поля вне цилиндра (r >R) определяется формулой

(τ – линейная плотность).

Разность потенциалов между двумя точками, лежащими на расстоянии r 1 и r 2 (r 1 >R; r 2 >R) от оси цилиндра, равна

(12.32)

      Поле равномерно заряженной бесконечной плоскости

Напряжённость поля этой плоскости определяется формулой

(σ - поверхностная плотность).

Разность потенциалов между точками, лежащими на расстоянии х 1 и х 2 от плоскости, равна

(12.33)

      Поле двух разноименно заряженных бесконечных параллельных плоскостей

Напряженность поля этих плоскостей определяется формулой

Разность потенциалов между плоскостями равна

(12.34)

(d – расстояние между плоскостями).

Примеры решения задач

Пример 12.1 . Три точечных заряда Q 1 =2нКл, Q 2 =3нКл и Q 3 =-4нКл расположены в вершинах равностороннего треугольника со стороной длиной a =10см. Определите потенциальную энергию этой системы.

Дано : Q 1 =2нКл=2∙10 -9 Кл; Q 2 =3нКл=3∙10 -9 Кл; и Q 3 =-4нКл=4∙10 -9 Кл; a =10см=0,1м.

Найти : U .

Решение: Потенциальная энергия системы зарядов равна алгебраической сумме энергий взаимодействия каждой из взаимодействующих пар зарядов, т.е.

U=U 12 +U 13 +U 23

где соответственно потенциальные энергии одного из зарядов, находящегося в поле другого заряда на расстоянии а от него, равны

;
;
(2)

Подставим формулы (2) в выражение (1), найдём искомую потенциальную энергию системы зарядов

Ответ: U=-0,126мкДж.

Пример 12.2 . Определите потенциал в центре кольца с внутренним радиусом R 1 =30см и внешним R 2 =60см, если на нём равномерно распределён заряд q=5нКл.

Дано: R 1 =30см=0,3м; R 2 =60см=0,6м; q=5нКл=5∙10 -9 Кл

Найти : φ .

Решение: Кольцо разобьём на концентрические бесконечно тонкие кольца внутренним радиусом r и внешним – (r+dr).

Площадь рассматриваемого тонкого кольца (см.рисунок) dS=2πrdr.

Потенциал в центре кольца, создаваемый бесконечно тонким кольцом,

где – поверхностная плотность заряда.

Для определения потенциала в центре кольца следует арифметически сложить dφ от всех бесконечно тонких колец. Тогда

Учитывая, что заряд кольца Q=σS, где S= π(R 2 2 -R 1 2)- площадь кольца, получим искомый потенциал в центре кольца

Ответ : φ=25В

Пример 12.3. Два точечных одноименных заряда (q 1 =2нКл и q 2 =5нКл) находятся в вакууме на расстоянии r 1 = 20см. Определите работу А, которую надо совершить, чтобы сблизить их до расстояния r 2 =5см.

Дано: q 1 =2нКл=2 ∙10 -9 Кл; q 2 =5нКл=5 ∙10 -9 Кл; r 1 = 20см=0,2м; r 2 =5см=0,05м.

Найти : А.

Решение: Работа, совершаемая силами электростатического поля при перемещении заряда Q из точки поля, имеющей потенциал φ 1 , в точку с потенциалом φ 2 .

A 12 = q(φ 1 - φ 2)

При сближении одноимённых зарядов работу совершают внешние силы, поэтому работа этих сил равна по модулю, но противоположна по знаку работе кулоновских сил:

A= -q(φ 1 - φ 2)= q(φ 2 - φ 1). (1)

Потенциалы точек 1 и 2 электростатического поля

;
(2)

Подставив формулы (2) в выражение (1), найдём искомую работу, которую надо совершить, чтобы сблизить заряды,

Ответ: А=1,35 мкДж.

Пример 12.4. Электростатическое поле создаётся положительно заряженной бесконечной нитью. Протон, двигаясь под действием электростатического поля вдоль линии напряжённости от нити с расстояния r 1 =2см до r 2 =10см, изменил свою скорость от υ 1 =1Мм/с до υ 2 =5Мм/с. Определите линейную плотность τ заряда нити..

Дано: q=1,6∙10 -19 Кл; m=1,67∙10 -27 кг; r 1 =2см=2∙10 -2 м; r 2 = 10см=0,1м; r 2 =5см=0,05м; υ 1 =1Мм/с=1∙10 6 м/с; до υ 2 =5Мм/с=5∙10 6 м/с.

Найти : τ .

Решение: Работа, совершаемая силами электростатического поля при перемещении протона из точки поля с потенциалом φ 1 в точку с потенциалом φ 2 идёт на увеличение кинетической энергии протона

q(φ 1 - φ 2)=ΔТ (1)

В случае нити электростатическое поле обладает осевой симметрией, поэтому

или dφ=-Edr,

тогда разность потенциалов между двумя точками, находящимися на расстоянии r 1 и r 2 от нити,

(учли, что напряжённость поля, создаваемого равномерно заряженной бесконечной нитью,
).

Подставив выражение (2) в формулу (1) и учитывая, что
, получим

Откуда искомая линейная плотность заряда нити

Ответ : τ = 4,33 мкКл/м.

Пример 12.5. Электростатическое поле создаётся в вакууме шаром радиусом R =8см, равномерно заряженными с объёмной плотностью ρ=10нКл/м 3 . Определите разность потенциалов между двумя точками этого поля, лежащими от центра шара на расстояниях: 1) r 1 =10см и r 2 =15см; 2) r 3 = 2см и r 4 =5см..

Дано: R=8см=8∙10 -2 м; ρ=10нКл/м 3 =10∙10 -9 нКл/м 3 ; r 1 =10см=10∙10 -2 м;

r 2 =15см=15∙10 -2 м; r 3 = 2см=2∙10 -2 м; r 4 =5см=5∙10 -2 м.

Найти : 1) φ 1 - φ 2 ; 2) φ 3 - φ 4 .

Решение: 1) Разность потенциалов между двумя точками, лежащими на расстоянии r 1 и r 2 от центра шара.

(1)

где
- напряжённость поля, создаваемого равномерно заряженным с объёмной плотностью ρ шаром, в любой точке, лежащей вне шара на расстоянииr от его центра.

Подставив это выражение в формулу (1) и проинтегрировав, получим искомую разность потенциалов

2) Разность потенциалов между двумя точками, лежащими на расстоянии r 3 и r 4 от центра шара,

(2)

где
- напряжённость поля, создаваемого равномерно заряженным с объёмной плотностью ρ шаром, в любой точке, лежащей внутри шара на расстоянииr от его центра.

Подставив это выражение в формулу (2) и проинтегрировав, получим искомую разность потенциалов

Ответ : 1) φ 1 - φ 2 =0,643 В; 2) φ 3 - φ 4 =0,395 В